
Journal of Magnetic Resonance 197 (2009) 219–228
Contents lists available at ScienceDirect

Journal of Magnetic Resonance

journal homepage: www.elsevier .com/ locate/ jmr
Narrow peaks and high dimensionalities: Exploiting the advantages
of random sampling

Krzysztof Kazimierczuk, Anna Zawadzka, Wiktor Koźmiński *
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Level of artifacts in spectra obtained by Multidimensional Fourier Transform has been studied, consider-
ing randomly sampled signals of high dimensionality and long evolution times. It has been shown theo-
retically and experimentally, that this level is dependent on the number of time domain samples, but not
on its relation to the number of points required in appropriate conventional experiment. Independence of
the evolution time domain size (in the terms of both: dimensionality and evolution time reached), sug-
gests that random sampling should be used rather to design new techniques with large time domain than
to accelerate standard experiments. 5D HC(CC-TOCSY)CONH has been presented as the example of such
approach. The feature of Multidimensional Fourier Transform, namely the possibility of calculating spec-
tral values at arbitrary chosen frequency points, allowed easy examination of resulting spectrum. We
present the example of such approach, referred to as Sparse Multidimensional Fourier Transform.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Multidimensional NMR techniques are routine tools for deter-
mination of biomolecular structure. Separation of peaks in addi-
tional spectral dimensions, proposed in 1970 by Jeener [1], is
exceptionally effective in studies of proteins, where the number
of resonances exceeds hundreds. However, the conventional
approach to this problem is limited by the need for fulfilling of
the Nyquist Theorem. The Theorem determines the sampling rate
to be twice higher than the highest frequency expected in the sig-
nal. In fact, this is an implicit limit for the maximum evolution time
sampled in indirect dimensions with given number of samples (i.e.
given experimental time). Because of this, even in 3D experiments
FID signals are rarely measured long enough to reach the relaxa-
tion limits in indirectly sampled dimensions. For spectra of higher
dimensionality it is practically impossible. Nowadays, this problem
is getting relatively important comparing to the problems of sensi-
tivity which are being solved by hardware improvements like mag-
nets of higher fields or cryogenically cooled probes. Moreover, it
should be noted that at higher fields the required Nyquist rate
grows together with spectral width.

Truncated time domain signal results in broadened spectral
peaks, according to Fourier Uncertainty Principle [2]. The problem
of sampling-determined line-widths arises with the number of
dimensions because Nyquist Theorem has to be fulfilled in each
of time dimensions separately.
ll rights reserved.

iński).
Many techniques have been invented to overcome the sampling
barrier for spectral resolution. Usually, their goal is to obtain the
spectrum from sparse time domain data i.e. from the number of
points lower than in conventional sampling schedule. Sparse data
sets may be of different kind, requiring various methods of pro-
cessing in order to obtain spectra. Some of these methods are:
Back-Projection Reconstruction [3–5], Reduced Dimensionality
[6–8] and Multi-Way Decomposition [9] employing radial sam-
pling, Polar Fourier Transform with radial [10–12] or concentric
ring sampling [13], Maximum Entropy Methods [14,15], Hyper-
dimensional Spectroscopy [16] and Multidimensional Decomposi-
tion [17] for sampling using points placed randomly (often on
Cartesian grid). Measurements of multidimensional spectra in a
single scan where also presented, employing spatial encoding
[18] or correlating data of lower dimensionality [19]. Enhanced
spectral resolution can also be obtained from conventional data
set. The example of such approach is Covariance Spectroscopy
[20] (which is, however, not limited to conventional sampling) or
Hadamard spectroscopy [21]. Truncated or block sampling may
be processed by Filter Diagonalization Method [22].

An important issue regarding Nyquist Theorem should be con-
sidered when discussing various advanced methods for processing
of non-linearly sampled signal. Although Fourier Transform (FT) of
signal sampled at constant rate is prone to peak folding, it is not
true that FT necessarily requires such data as an input. This is
required by Fast Fourier Transform (FFT) algorithm which is one
(but not only) possibility for calculating Fourier integral. Admit-
tedly, FFT is very efficient numerically, but for multidimensional
signal it requires sampling of time domain with points placed on
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knots of Cartesian grid. Each dimension is sampled and trans-
formed separately, which is very fast in terms of computing time
but not in terms of spectrometer time. That is because sampling
points in time space that have the same ti coordinate provide iden-
tical information about frequency dimension xi. Thus, for k-
dimensional conventional experiment with N points in each
dimension, the total experiment time texp increases exponentially
with number of dimensions:

texp ¼ Nk�12k�1rt ð1Þ

where rt is the repetition time of the direct measurement of FID and
2k�1 represents number of data sets required by quadrature detec-
tion rules.

In general, however, the numerical approximation of multidi-
mensional integral can be performed using any kind of samples,
even not suitable for FFT. We have proposed the off-grid random
sampling, which is in our opinion the best option for non-linear
sampling, i.e. produces Point Spread Function (PSF) of the best sig-
nal-to-artifact ratio [23,24]. The time domain signal is sampled
evenly and each point differs from the others in values of all its
coordinates (or, in perfect case, there is infinitesimally small prob-
ability that it will not differ). This means, that information about
the frequencies of multidimensional correlation signals becomes
more and more emphasized with each sampling point i.e. aliasing
is suppressed in all directions.

The influence of sampling grid on the resulting spectra is worth
deeper discussion, as random on-grid sampling is chosen very
often. This is because on-grid sampling, allows separation of time
(and, consequently, frequency) variables during processing. The
separation is possible even if the sampling is sparse, as shown
recently by Coggins and Zhou [25]. However, the fact that sparse
sampling points are on knots of Cartesian grid results in problem
known as primary and secondary aliasing [26]. Briefly, the primary
aliasing manifests itself by the existence of folded peaks, which are
at the same positions as folded peaks resulting from conventional
sampling performed on the same grid but using full set of points.
Moreover, they are of the same intensities as the ‘‘true” peak. In
other words, while using on-grid random sampling the primary ali-
asing effect is neither avoided nor even attenuated. Secondary ali-
asing is the phenomenon of more complicated nature. It results in
many false spectral peaks featuring lower intensity than original,
‘‘true” peak. Often, they are called artifacts or ‘‘sampling noise”.
The shape and distribution of this artifacts may be predicted by
separating sampling schedule into combination of ‘‘component
grids”, which have smaller number of points but larger distance
between them, and by predicting the effect of primary aliasing
for each of them. The sum of this ‘‘component primary aliases” is
called secondary aliasing. The magnitude of secondary aliasing
effect depends on the number of ‘‘component grids” and the num-
ber of points occupying them. The bigger their number with smal-
ler number of points on each, the more false peaks of lower
intensity appear in the spectrum. In other words, the artifacts are
more evenly spread over spectral domain (which is favorable). Of
course, using more dense sampling grid during generation of on-
grid random sampling pattern shifts away the false peaks originat-
ing from primary aliasing and makes the secondary aliasing artifact
pattern more even.

The processing of on-grid data may be fast, even if the grid is
quite dense, as it allows obtaining spectrum by sequential FFT.
The example of such approach was shown recently in application
to 4D HCCH-TOCSY experiment presented by Coggins and Zhou
[25]. However, in application for really large evolution time
domains (which in our opinion are the best target for random sam-
pling), the sequential FFT may quickly become problematic
because of hard disk space requirements. For example, in the case
of 5D experiment with 256 samples in each dimension, the FFT has
to handle with data matrix which is in order of terabytes. This is
because standard FFT has to transform full spectral width in each
dimension, with equal frequency intervals, of number equal to at
least the number of time domain intervals (rounded up to 2 N).

However, simple modification of Fourier Transformation algo-
rithm allows reducing of size of transformed spectrum to the
regions of interest which is discussed in further part of this paper.
We have recently proposed the Multidimensional Fourier Transfor-
mation (MFT) [11,23] as a general approach for processing of
arbitrary sampled data sets. The essence of MFT may be presented
as follows: instead of separating time variables by conventional,
on-grid sampling followed by sequence of one-dimensional FFT ’s:

f1ðt1; t2; . . . ; tmÞ !
FTðt1Þ f2ðx1; t2; . . . ; tmÞ !

FTðt2Þ
. . . !FTðtmÞ

Sðx1;x2; . . . ;xmÞ
ð2Þ

we approximate really multidimensional Fourier integral:

f1ðt1; t2; . . . ; tmÞMFTðt1 ;t2 ;...;tmÞ ! Sðx1;x2; . . . ;xmÞ ð3Þ

by summation over whole time domain for each point of frequency
domain:

Sðx1;x2; . . . ;xmÞ ¼
XN

n¼1

f1ðtn
1; t

n
2; . . . ; tn

mÞexp ð�i1x1tn
1

� i2x2tn
2 . . .� imxmtn

mÞ ð4Þ

where x1;x2; . . . ;xm are spectral frequencies, tn
1; t

n
2; t

n
m are coordi-

nates of time point number n, m is the number of spectral dimen-
sions, i1, i2,. . .im are imaginary units for commutative Clifford
algebra of m-th order and N is the number of time domain points.

2. Theory

Spectra of randomly sampled signals have many important
features concerning artifact level, which are however not well
understood and thus not fully exploited. Number of time domain
points per unit of evolution time space is often used as a parameter
evaluating the level of ‘‘sparseness” of sampling. Most often, the
ratio H between the particular sampling density level and Nyquist
density (i.e. points density in conventional experiment) is held into
account:

H ¼ N
t1maxt2max; . . . ; tnmaxsw1sw2; . . . ; swn

ð5Þ

where N is the total number of time points in sparse experiment,
tkmax is maximum evolution time in dimension k and swk is respec-
tive spectral width. The bottom of above fraction is the number of
points required to fulfill Nyquist Theorem for each swk while reach-
ing tkmax. Thus, H shows the sparseness of sampling in the terms of
time saved comparing to conventional experiment. In most of the
sampling schemes this parameter is related to the level and shape
of artifacts. However, this is not the case of off-grid random sam-
pling processed by MFT. In our recent works [23,24] we have shown
that artifacts from random sampling appear even when sampling
density is above Nyquist condition. Moreover, they do not origin
from integration imperfections, but rather from breaking of conven-
tional Sampling Theorem, which stands that function with finite
spectrum may be fully specified by its values only if they are at least
at Nyquist density, like in interlaced sampling schemes [27]. Even
randomly sampled data at Nyquist density can result in artifact-free
spectra by application of unorthogonal transform [26]. In the fur-
ther part of this paper we are going to estimate the level of random
sampling artifacts, and prove that it depends only on the number of
time points, in the same way as thermal noise. First, we shall ana-
lyze the Fourier Transform of FID signal f(t).



Fig. 1. Time (a and c) and frequency (b and d) domain representation of
conventional (a and b) and random (c and d) sampling schemes.
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For one-dimensional f(t):

SðxÞ ¼
Z

dtf ðtÞe�ixt ð6Þ

For multidimensional f(t):

Sðx1;x2; . . . ;xmÞ

¼
Z

dt1

Z
dt2 . . .

Z
dtmf ðt1;t2; . . . ;tmÞe�i1x1t1 e�i2x2t1 . . .e�imxmt ð7Þ

For better analysis of Fourier Transform integral it is convenient to
make use of Convolution Theorem:

FT½uðtÞmðtÞ� ¼ FT½uðtÞ� � FT½mðtÞ� ð8Þ

which means that Fourier Transform of product of two functions is
convolution (*) of their Fourier Transforms.

In the above case of perfect continuous Transform of infinite,
exponentially decaying signal one obtains spectrum consisting
only of peaks of Lorentzian shapes. This is because simplest FID
containing one correlation signal is the product of two functions
of time uðtÞmðtÞ:

decaying exponential function,

uðtÞ ¼ e�R1t1 e�R2t2 ; . . . ; e�Rmtm ð9Þ

whose Fourier Transformation is Lorentzian function:

RefFT½uðtÞ�g ¼ R1

R2
1 þ

x1
2p

� �2

R2

R2
2 þ

x2
2p

� �2 ; � � � ;
Rm

R2
m þ xm

2p

� �2 ð10Þ

and oscillatory function,

mðtÞ ¼ e�i1X1t1 e�i2X2t2 ; . . . ; e�imXmtm ð11Þ

whose Fourier Transformation gives multidimensional delta
function:

FT½mðtÞ� ¼ dðx1 �X1;x2 �X2; . . . ;xm �XmÞ ð12Þ

Convolution of delta function and Lorentzian function gives
spectrum consisting of Lorentzian-shaped peaks at positions of res-
onances. The effect of exponential decay on the spectrum can be
easily extracted and evaluated independently of other modifica-
tions of function of time. Therefore, we will neglect the relaxation
in further discussion. FID frequencies can also be neglected (set to
0) as they influence only position, not shape of spectral peak. Thus,
constant non-decaying signal will be considered in studies of sam-
pling effects presented below. Its Fourier Transform involving all of
these effects is referred to as Point Spread Function.

Now, two unavoidable experimental limitations will be consid-
ered by employing Convolution Theorem: the influence of finite
acquisition time and discrete sampling.

First, finite evolution time can be described by multiplying infi-
nite FID by rectangular function

Q
ðt1; t2; . . . ; tmÞ:Y

ðt1; t1; . . . ; tmÞ ¼
1 8ti < timax

0 9ti > timax

�
ð13Þ

where timax are maximum evolution times set in appropriate spec-
tral dimensions. Its Fourier Transformation gives so called sinc func-
tion in each spectral dimension:

FT
Y
ðtÞ

n o
¼ sin x1=t1maxð Þ

x1=t1max

sin x2=t2maxð Þ
x2=t2max

� � � sin xm=tmmaxð Þ
xm=tmmax

ð14Þ

This result is easy to interpret: truncation of signal leads to sinc-
shaped peaks. Again, like in the case of Lorentzian line shape
caused by exponential decay, this effect can be separated from
other effects. Simulations of PSF presented in the further part of
this work do not reveal sinc-shaped peaks despite finite maximum
evolution times timax because the distance between spectral points
is set to:
Dmi ¼
Dxi

2p
¼ n

2timax
; where n ¼ 1;2;3; . . . ð15Þ

which, for signal of zero frequency, means that spectral values are
calculated exactly on the peak, and for the zeroes of sinc function.

Then, sampling should be considered. Depending on the sam-
pling scheme, sampling function which multiplies signal of inter-
est, may be of different shape. In the conventional experiment
sampling points are equally spaced and sampling function is so
called shah function (plotted in Fig. 1a), namely:

IIIðt1; t2; . . . ; tmÞ ¼
XN1

n1¼1

XN2

n2¼1

� � �
XNm

nm¼1

dðt1 � n1s1; t2

� n2s2; . . . ; tm � nmsmÞ ð16Þ

where s1; s2; . . . ; sm are distances between samples according to
Nyquist Theorem.

Thus, multidimensional shah is a set of deltas placed at knots of
Cartesian grid. Its Fourier transform is of similar shape (see Fig. 1b),
namely:

FTfIIIðt1;t2; . . . ;tmÞg

¼
XN1

n1¼1

XN2

n2¼1

� � �
XNm

nm¼1

d x1�2pn1

s1
;x2�2pn2

s2
; � � � ;xm�2pnm

sm

� �
ð17Þ

Note, that distances between peaks in spectral domain are in-
versely proportional to appropriate distances in time domain. Con-
volution of the frequency domain shah function (Eq. (17)) with
perfect spectrum produces infinite number of its equivalent copies,
which leads to signal aliasing, if distance between time points is
greater than inverse spectral width in appropriate dimension. This
is a direct consequence of already mentioned Nyquist Theorem.

Suitable sampling function for non-linear (i.e. with unequal
sampling intervals) sampling, denoted eIII, has to be defined in
more general way:

eIIIðt1; t2; . . . ; tmÞ ¼
XN

n¼1

dðt1 � tn
1; t2 � tn

2; . . . ; tm � tn
mÞ ð18Þ

where tn
1; t

n
2; . . . ; tn

m are time coordinates of sample number n. We are
going to discuss random sampling i.e. these coordinates will be ran-
dom numbers of some distribution (uniform, Gaussian etc.). For
graphical presentation – see Fig. 1c. Fourier Transform ofeIIIðt1; t2; . . . ; tmÞ shown in Fig. 1d, is of different shape than that of
IIIðt1; t2; . . . ; tmÞ. It contains only one, dominating peak and infinite
spectrum of artifacts (secondary aliases).

It is impossible to find general, analytical shape of PSF in the
case of random sampling. There is, however, simple relation
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between magnitude of sampling artifact at particular point of
frequency domain and time domain points distribution. To find
it, some simple, statistical laws have to be used [28]. In the further
analysis only a cosine Fourier Transform will be considered, as it is
easier to visualize than complex FT, providing the same conclu-
sions for signal of zero frequency.

At particular point of spectral domain x1;x2; . . . ;xm the value
of PSF (i.e. Fourier Integral of signal f ðt1; t2; . . . ; tmÞ = 1)is:

Sðx1;x2; . . . ;xmÞ ¼
XN

n¼1

cosðx1tn
1Þcosðx2tn

2Þ . . . cosðxmtn
mÞ ð19Þ

where tn
1; t

n
2; . . . ; tn

m are some random numbers generated using
known Probability Density Functions (PDF) f1(t1), f2(t2),. . .,fm(tm).
Thus, spectral values are sums of multidimensional cosine function
of m random variables. Now, two simple observations can be made.

First, we shall consider cosines in the above sum: yi ¼ giðtiÞ ¼
cosðxitiÞ as a new set of random variables. According to basic
statistical laws, PDF hiðyiÞ of monotonic function g(ti) of random
variable ti is equal to:

hiðyiÞ ¼
fiðg�1ðyiÞÞ

dyi
dti

��� ��� ð20Þ

Cosine is not monotonic, and thus has to be considered sepa-
rately in monotonic parts (see Fig. 2). Because probability of find-
ing yi inside the interval y; yþ dy is equal to probability that ti is
inside one of the regions:

Pðyi 2 ðy; yþ dyÞÞ ¼
X

t:gðtÞ¼y

Pðti 2 ðt; t þ dtÞÞ ð21Þ

Thus, PDF for non-monotonic function is equal to:

hiðyiÞ ¼
X

ti :giðtiÞ¼y

fiðtiÞ
dyi
dti

��� ��� ð22Þ

PDF for variable ti can be chosen arbitrary, depending on the
shape of signal (decaying or not) and affects line shape in the same
way as weighting function [24]. Thus, for simplicity, uniform PDF
will be considered for generation of sampling points. We assume
Fig. 2. Function yi ¼ cosðxitiÞ. Probability of generating yi from the band (yi, yi + dyi) by r
regions.
that t is randomized uniformly within the band (0, tmax) with
tmax ?1. To avoid being imprecise, we also assume, that maxi-
mum evolution time is equal to kmax

2p
jxi j

i.e. to whole number of
periods. For the infinite signal this is true for every xi (only kmax

differs between frequencies, which does not influence the results).
The shape of PDF for generation of time points is thus:

fiðtiÞ ¼
jxij

2kmaxp
for ti 2 0; kmax

2p
jxij

� �
otherwise; f iðtiÞ ¼ 0 ð23Þ

To find PDF for cosine function of frequency xi and random time
variable ti we shall denote following statements:

yi ¼ cosðxitiÞ ð24aÞ
dyi

dti

���� ���� ¼ xi sinðxitiÞj j ¼ xij j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

i

q
ð24bÞ

Now, using the Eq. (22) one can obtain:

hiðyiÞ ¼
X2kmax

k¼0

jxij
2pkmax xisinðxitiÞj j ð25Þ

Thus, using jsinðxitiÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

i

q
:

hiðyiÞ¼
X2kmax

k¼0

1

2pkmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

i

q ¼2kmax
1

2pkmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

i

q ¼ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�y2

i

q ð26Þ

Obtained PDF is very simple. It is frequency independent, which
means that values of all randomly sampled cosine terms in Eq.
(19) are generated with the same PDF (see Fig. 3). Because evolution
times t1; t2; . . . ; tn are randomized separately (i.e. they are indepen-
dent variables), the PDF of product of cosines in Eq. (19) is simply
the product of their PDFs:

htotalðy1; y2; . . . ; ymÞ ¼
Ym
i¼0

1Q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

i

q ð27Þ

Considering the above result, the estimation of PDF for
Sðx1;x2; . . . ;xmÞ from Eq. (19) is now easy. Spectral point
Sðx1;x2; . . . ;xmÞ is a sum of independent random numbers of the
andomizing argument ti is equal to the probability that ti is inside one of the marked



Fig. 3. Graphical representation of Probability Density Function hiðyiÞ ¼ 1
p
ffiffiffiffiffiffiffiffi
1�y2

i

p (line) and normalized histograms of values of yi ¼ cosðxitiÞ obtained by randomizing ti using

uniform distribution and different frequencies: (a) 100 Hz (b) 1000 Hz (c) 10,000 Hz. Four thousand nine hundred six samples were used to generate histograms. Shape of
histograms converges to that of Eq. (27) independently of frequency.
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same PDFs htotalðy1; y2; . . . ; ymÞBasic statistical law, known as Central
Limit Theorem stands that in such case the Sðx1;x2; . . . ;xmÞ is var-
iable of normal distribution. Because mean value of all cosine terms
is 0, then also distribution of Sðx1;x2; . . . ;xmÞ reveals the same
mean value of 0. Moreover, according to Central Limit Theorem,
the variance of spectral value rS depends only on the number of
summed samples N and their individual variance rn:

rS ¼ rn=
ffiffiffiffi
N
p

ð28Þ

In other words, intensity of spectral artifact originating from
random sampling behaves in the same way as thermal noise. This
explains the experimental fact reported before [23] that signal-to-
artifact ratio is proportional to the

ffiffiffiffi
N
p

and may be also derived
from similar proofs for one-dimensional signals published in fields
different than NMR. For example, in the work of Tarczyński and
Allay [29] the equations for expected value of spectrum estimator
in weighted samples method (in our case there is no weighting i.e.
w(t) = 1) and its standard deviation were derived. They are of the
following shape (Eqs. (8) and (21) in [29]):

Expected value of spectrum estimator:

EfXWSðxÞg ¼ XWðxÞ ð29Þ
Fig. 4. Point Spread Functions for non-relaxing signal sampled using 250 randomly dist
tmax = 8 s; (c) tmax = 16 s; (d) tmax = 32 s; (e) tmax = 1 month; (f) tmax = 1 year. The magnitu
and thus independently of the part of Nyquist Density used which is: (a) H = 3.12; (b) H
between spectral points is set to 0.125 Hz in order to zero the effect of sinc. Because of th
exists.
where EfXWSðxÞg is the expected value of spectral estimator and
XWðxÞ is the value of continuous FT of signal x(t). This proves that
estimator is unbiased.

Standard deviation of spectrum estimator:

rWSðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TEWS � jXWðxÞj2

N

s
ð30Þ

where T is the acquisition time of the signal, EWS is the energy of the
signal in the period T, and N is the number of samples.

For constant signal f(t) = 1 discussed above, we obtain:

EfXWSðxÞg ¼
Z T

0
dt1 � expð�ixtÞ ¼

T for x ¼ 0
0 for x ¼ 0

�
ð31aÞ

EWS ¼
Z T

0
dtðxðtÞÞ2 ¼ T ð31bÞ

In the Eq. (31a) sinc was neglected, similarly as in proof above.
Now, substitution of (31a) and (31b) to (30) gives:

rWS ¼

ffiffiffiffiffi
T2

N

s
for x – 0 ðartifact amplitudeÞ ð32Þ
ributed time points and different maximum evolution times tmax: (a) tmax = 4 s; (b)
de of artifacts is constant, independently of number of time points per unit of time,
= 1.56; (c) H = 0.78; (d) H = 0.39; (e) H = 4.8 10�6; (f) H = 3.96 10�7. The distance
is digital resolution the effect of line narrowing can not be observed, but obviously



Fig. 5. Dimensionality and artifacts – simulations. (a) Sample of time domain points coordinates (number of points is 250); (b) 1D peak shape (PSF) in simulation employing
first column (t1); (c) 2D peak shape employing t1 and t2; (d–f) orthogonal cross-sections showing 3D peak shape employing t1, t2 and t3. In all simulations the level of artifacts
is similar, independently of number of dimensions and thus independently of the relative sampling density H, equal to 1.94, 0.015, and 0.00012, in the 1D, 2D and 3D
simulation, respectively. Evolution time of 0.4 s, spectral width of 322.5 Hz and 129 spectral points were used in all dimensions. Because the distance between spectral points
is 2.5 Hz the effect of convolution with sinc function is zeroed. Threshold is set at the 8% of peak intensity.

Fig. 6. Dimensionality and artifacts – 4D HNCOCA experiment. Cross-sections of A28 signal. (a) Sample of time domain points coordinates (number of points is 2500); (b) Ca-
C0 2D cross-section and 1D slices from 4D HNCOCA (H = 0.013); (c) Ca 1D cross-section from 3D HN(CO)CA (t2 column in table in panel (a) was zeroed, H = 0.54); (d) C0 1D
cross-section from 3D HNCO(CA) (t1 column in table in panel a) was zeroed, H = 0.97); (e) Ca 1D cross-section from 2D H(NCO)CA (t2 and t3 columns in table in panel a were
zeroed, H = 33.33); (f) C0 1D cross-section from 2D H(N)CO(CA) (t1 and t3 columns in table in panel a were zeroed, H = 59.52).

224 K. Kazimierczuk et al. / Journal of Magnetic Resonance 197 (2009) 219–228
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Signal-to-artifact ratio is therefore:

S=N ¼ EfXWSð0Þg
rWSðxÞ

¼
ffiffiffiffi
N
p

ð33Þ

It is noteworthy, that although both peak value EfXWSð0Þg and arti-
fact magnitude rWSðxÞ depend on T, their ratio is independent of it.

Similar proof may be derived from Eq. (5) in the work of Dippé
and Wold [30]. These authors, however, have chosen different
approach – further they discussed infinite signal with constant
sampling rate (which, obviously, makes all conclusions indepen-
dent of number of samples, which is infinite). Small modification
of their proof i.e. setting of finite sampling period X in their Eq.
(6) leads to the dependence of signal-to-noise ratio on number of
samples rather than sampling rate (which is more practical for
NMR). Moreover, these authors have shown similar relations for
different types of random sampling, as for example jittered and
Poisson sampling, also used in NMR [31].

In fact, the conclusion about signal-to-artifact ratio is quite intu-
itive. The artifact magnitude in Point Spread Function of randomly
sampled signal, at the frequency pointx is equal to the sum of values
of cos(xtk) at sampling points tk. The expected value of this sum does
not depend on the sampled period and x, as derived in Eq. (27). It
does not depend on the dimensionality, too. Only increasing the
number of points will change the value of this sum.

Above facts lead to quite surprising conclusions. The most
important is that signal-to-artifact ratio in ideal experiment (with-
out relaxation) employing random sampling does not depend on
anything but the number of time domain samples. It is indepen-
dent of the particular spectral width, maximum evolution times
or number of dimensions (see Figs. 4 and 5). This means that with
random sampling the resolution of obtained spectra is limited only
by thermal noise level and transverse relaxation rate. Moreover,
resolving spectrum by adding any number of dimensions does
not cause increase of the artifact level.

In other words, dimensionality, spectral widths and maximum
evolution times can be chosen arbitrary, with no effect on experi-
ment time, which determines only signal-to-artifact and signal-to-
noise ratios. In contradiction, in conventional sampling-limited
experiment all these factors influence the experiment time.

The practical consequence of above relations is that it is benefi-
cial to set the number of scans per point as low as possible (accord-
ing to basic phase cycle) and increase number of random time
domain points for given experimental duration. This approach
causes both signal-to-artifact and signal-to-noise ratio to rise pro-
portionally to

ffiffiffiffi
N
p

, while increasing number of scans at the expense
of reducing number of points improves only the latter.

Thus, the advantages of random sampling can be fully exploited
using extended number of dimensions or ultra-long evolution times.
This is in contradiction to the common way of employing random
sampling to accelerate obtaining information from the same evolu-
tion space volume as in conventional experiments. The key feature of
random sampling and MFT processing is ability of acquiring ultra-
high-resolution spectra of high dimensionality in the same experi-
ment duration, which is usually more interesting as it could provide
more information on physical phenomena. Recently we have shown
the example of ultra-high-resolution 3D spectra which enabled
determination of small spin–spin couplings [32].
Fig. 7. Example of side-chain assignment procedure employing SMFT. Transforma-
tion of5DHC(CC-TOCSY) data on the base of 3D HNCO peak list results in set of 2D
cross-sections.
3. Sparse Multidimensional Fourier Transform (SMFT)

The improved resolution, being a great advantage, may cause
data handling problems. Large number of spectral points has to be
used in order to avoid missing narrow peaks between frequency
domain points, i.e. the distance between spectral points should be
smaller than expected line-width. This digital resolution determines
the amount of data to be stored. For example three-dimensional
spectrum containing 1024 real frequency points in each dimension
has size of 4 GB (while using floating point variables). The problem
is getting more serious with increasing the dimensionality of spec-
tra: e.g. four-dimensional spectrum of the same resolution in each
dimension would require four terabytes of disk space.

It is possible to solve this problem by exploiting the fact that
peaks in high dimensional NMR spectra are rather dispersed, occu-
pying only a small part of entire frequency domain. Therefore, Fou-
rier transformation can be focused on the regions of interest, which
may be determined using simpler experiments. At first the two- or
three-dimensional experiment of very high-resolution should be
performed (again, random sampling can be employed here). Then
peak coordinates need to be extracted. On their basis, calculation
of full 4 or higher dimensional spectrum may be reduced to the
1D, 2D or 3D regions of interest, featuring as high digital resolution
as necessary. For example, positions of resonances of amide pro-
tons, nitrogens and carbonyl carbons, obtained from 3D HNCO
spectrum, can determine regions of interest for processing of data
from 5D HC(CC-TOCSY)CONH experiment (see flowchart given in
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Fig. 7). In this case, processing results with a set of 2D (Caliph, Haliph)
cross-sections, one for each resonance from 3D HNCO spectrum. In
fact, well known resonance assignment strategies employ similar
way of thinking. For example, peak selection in 3D HNCO is usually
performed using peak coordinates from 15N HSQC.

Above approach, later referred to as Sparse Multidimensional
Fourier Transform (SMFT) may be defined using MFT formula (Eq
(4)), but with set of frequencies (x1;x2; . . . ;xm) chosen in an arbi-
trary way, e.g. some of them may be set according to knowledge
obtained from other spectra. In conventional, non-sparse approach,
(x1;x2; . . . ;xm) is one of spectral domain points laid out in a grid
pattern. Its coordinates xconv

i are defined by:

xconv
i ¼ � swi

2
þ kiDmi ð34Þ

where swi is spectral width in dimension i consisting of Ni points,
Dmi ¼ SWi

Ni�1 is the distance between spectral points in this dimension,
and ki 2 f0;1; . . . ;Nig. In SMFT frequency coordinates xSMFT

i may be
arbitrary. In some dimensions they may be conventional ones, the
same as in the Eq. (29). Others, however, may consist of arbitrary
chosen values Xi, like peak coordinates known from simpler spec-
tra. If the dimension i consists of conventional on-grid frequency
values, it will be denoted as on-grid dimension. Otherwise it will
be called definite dimension.

xSMFT
i ¼ � SWi

2 þ kDmi if i is on-grid dimension
Xi if i is definite dimension

(
ð35Þ
Fig. 8. Example of F1–F2 cross-sections from 5D HC(CC-TOCSY)CONH spectrum. Each c
vectors consisting of HNCO peak positions. The 2D cross-sections reveal aliphatic 1Hi�1–
(b)T12-NH (resonances of K11 side-chain); (c) T14-NH (resonances of I13 side-chain); (d)
(f) K29-NH (resonances of A28 side-chain). Experiment lasted 61 h, 2000 time domain p
It is noteworthy, that such arbitrary trajectory in frequency
domain can not be obtained by application of sequential FFT or
any other processing method requiring on-grid frequency points.

The example of such approach is illustrated in Fig. 8 presenting
5D HC(CC-TOCSY)CONH as the set of 2D cross-sections, obtained in
the manner described above. The separate 2D cross-sections are
obtained for each amino acid residue, thus enabling identification
and assignment of spin systems of all aliphatic side-chain proton
and carbon nuclei. Such method of processing saves disk space,
and does not exclude possibility of different choice of definite
dimensions, or even full 5D processing using the same data.
Recently, different example of 5D HC(CC-TOCSY)CONH experiment
using APSY procedure has been presented [33]. In this case the 5D
information is obtained from analysis of the set of projections
obtained from automated radial sampling. It is noteworthy, that
data obtained by radial sampling can also be processed by MFT,
resulting in a full dimensional spectrum (identical to these
obtained by Projection Reconstruction), or by SMFT resulting in
the set of spectra. Example of similar sparse transformation of radi-
ally sampled signal was presented before [34,35]. However, it is
much more convenient to use random than radial sampling, due
to reduced artifact amplitude and ability to sample far below
Nyquist condition in a case of the former.

4. Experimental

All spectra were recorded for 1.5 mM 13C, 15N-double labeled
human ubiquitin in 9:1 H2O/D2O at pH = 4.5 at 298 K on a Varian
ross-section was obtained by SMFT with HNi, Ni, C0 i�1, coordinates determined by
13Ci�1 correlations for each side-chain. (a)K11-NH (resonances of G10 side-chain);
Q18-NH (resonances of V17 side-chain); (e) D21-NH (resonances of S20 side-chain);
oints were used H = 5.4 � 10�5).
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NMR System 700 spectrometer equipped with a Performa XYZ PFG
unit and using the 5 mm 1H, 13C, 15N – triple resonance probehead
with high power 1H, 13C, and 15 N p/2 pulses of 5.9, 13.5, and
31.0 ls, respectively. The pulse sequences were adapted from the
Varian Userlib BioPack package. The resulting spectra were saved
and displayed in the format of SPARKY program [36].

For the 4D HNCOCA experiment (Fig. 6) spectral width of
6000 � 2500 � 2500 � 12000 Hz was set in F1(Ca), F2(C0), F3(N),
and F4(HN), respectively. The maximum evolution times t1, t2 and
t3 of 7.0, 30.0, and 24.5 ms, were used, respectively. The 15N evolu-
tion in t3 was performed in constant time mode. Four scans were
coherently added in all eight data sets for 2500 randomly distrib-
uted t1/t2/t3 data points. Therefore, the sampling density reached
1.3% of required for conventional experiment (H = 1.3 10�2). The
3D HN(CO)CA, 3D HNCO(CA), 2D H(NCO)CA, and 2D H(N)CO(CA)
experiments were acquired in exactly the same conditions with
one or two time coordinates set to zeroes.

The 5D HC(CC-TOCSY)CONH experiment spectral width of
4500 � 12000 � 2770 � 2300 � 12000 Hz was set in F1(Halif), F2(Ca-

lif), F3(C), F4(N),and F5(HN), respectively. The maximum evolution
times t1, t2, t3, and t4 of 15.0, 12.0, 20.0, and 30.0 ms, were em-
ployed, respectively. The 15N evolution in t3 was performed in semi
constant time mode. Four scans were coherently added in all six-
teen data sets for 2000 random t1/t2/t3/t4 data points with time
decaying (r = 0.5) Poisson disk distribution. The sampling density
reached 0.0054% of required for conventional experiment
(H = 5.4 � 10�5). The 14.5 ms DIPSI-3 spinlock with cB2/
2p = 7500 Hz, was used for isotropic mixing of 13C magnetization.

In all cases acquisition time of 85 ms and relaxation delay of
1.2 s was employed. For processing of directly detected dimension
cosine square weighting function was applied prior to Fourier
transformation with zero-filling to 2048 complex points.
5. Conclusions

One of the most popular ways of evaluating sparse sampling is
to compare the sampling density with the so called Nyquist density
(i.e. number of points per time domain volume unit in conven-
tional experiment). Such comparison gives no information about
signal-to-artifact ratio, as the Nyquist density depends on the spec-
tral width, maximum evolution times and number of dimensions,
which have nothing in common with the artifact level. Due to this
fact, it seems that use of random sampling becomes beneficial for
high dimensionality and long maximum evolution times.

However, such an approach, resulting in high-resolution spectra
of high dimensionality causes problems, as the spectrum requires
hard disk space which is so far inconvenient (or even impossible)
to be handled by modern computers. Moreover, besides problems
with data handling, there is still a problem of human perception
and imagination. Spectra of dimensionality higher than 3, although
very useful, are quite hard to be analyzed. Nevertheless, some of
their peak coordinates are well known from other, simpler mea-
surements. Thus, the Fourier integral should be calculated in re-
gions of interest only. For example, some dimensions may be
calculated in a conventional way (on-grid spectral dimensions),
while the rest only at the positions of the peaks, which are known.
It is noteworthy, that spectral resolution may be very high, not
causing significant problems with computing time or data size,
as only small spectral regions are calculated. Thus, SMFT provides
high precision of frequency determination.
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